THE MAGNUS EMBEDDING IS A QUASI-ISOMETRY

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Magnus-smelkin Embedding

The generalization of the Magnus embedding [7] proved by Smelkin [9] may be stated as follows. Let L be a free group freely generated by the set x^iel) , and let R be a normal subgroup of L with G = L/R. If V is any variety of groups and n is the F-free group with free generating set the symbols [g,xj (geG, iel), then L/V(R) is embedded in the semidirect product II xi G (where the action of G o...

متن کامل

Quasi-isometry rigidity of groups

2 Rigidity of non-uniform rank one lattices 6 2.1 Theorems of Richard Schwartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Finite volume real hyperbolic manifolds . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Homological Invariants and Quasi - Isometry

Building upon work of Y. Shalom we give a homological-algebra flavored definition of an induction map in group homology associated to a topological coupling. As an application we obtain that the cohomological dimension cdR over a commutative ring R satisfies the inequality cdR(Λ) ≤ cdR(Γ) if Λ embeds uniformly into Γ and cdR(Λ) < ∞ holds. Another consequence of our results is that the Hirsch ra...

متن کامل

A Quasi-isometric Embedding Algorithm

The Whitney embedding theorem gives an upper bound on the smallest embedding dimension of a manifold. If a data set lies on a manifold, a random projection into this reduced dimension will retain the manifold structure. Here we present an algorithm to find a projection that distorts the data as little as possible.

متن کامل

The embedding conjecture for quasi-ordinary hypersurfaces

This paper has two objectives: we first generalize the theory of Abhyankar-Moh to quasi-ordinary polynomials, then we use the notion of approximate roots and that of generalized Newton polygons in order to prove the embedding conjecture for this class of polynomials. This conjecture -made by S.S. Abhyankar and A. Sathayesays that if a hypersurface of the affine space is isomorphic to a coordina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2012

ISSN: 0218-1967,1793-6500

DOI: 10.1142/s021819671240005x